

Specification	AXLE7050S	Rev.: 2	Date: 2024-03-14		
Oscillator type:	Low Phase Noise TCXO in 7x5 mm ceramic package				
	for Space Application (Space COTS version)				

Features:

- Lower cost Commercial Off-The-Shelf version (COTS)
- Dedicated for LEO~MEO applications
- Manufactured according to MIL-PRF-55310 Level "S"
- Radiation hardened 40 krad(Si) total dose (TID)
- Radiation hardened SEL immune > 90 MeV
- ITAR Free Manufactured in Europe
- Low Phase Noise
- High Frequency Stability
- Hermetical sealed 7x5 mm ceramic package
- Short lead time

Models:

Item	Engineering Model	Flight Model	Note
	(EM)	(FM)	
Quartz	Synthetic HiQ Quartz,	Synthetic HiQ Quartz,	1
Crystal	AT-cut	AT-cut	
Electrical	COTS parts	COTS parts	-
Components		Automotive Grade	
		and/or HighRel Heritage	
Mechanical	Ceramic package with	Ceramic package with	
Components	metal cover	metal cover	
Workmanship	Hybrid manufacturing	Hybrid manufacturing	-
Rad Hard	-	40 krad(Si) TID	2
	Acceptance Testi	ng	
Screening	Test procedure as	Х	3
Group-B	commercial models	Х	-
Group-C	-	On request	4

Notes:

- 1. Swept Quartz material available on request.
- 2. Tested up to 50 krad and SEE tested up to 125 $MeV{\cdot}cm^2/mg$
- 3. Screening procedure can be modified IAW customer requirements.
- 4. Group-C (LAT) can be performed based on customer requirements.

Ordering Code:

Model	Product category	Options	Revision	Frequency [MHz]
AXLE7050S	EM	1 to 3*	Rev.2	20.000
	FM			

Example: AXLE7050S-FM-V-10-2C_Rev.2 – 20.000 MHz

* Please see full order code with options below

AXTAL GmbH

Roemerring 9 74821 Mosbach Germany AXLE7050S Rev.2 Drawing D1

Page 1/12

- **0.** Contents:
 - **1. Electrical specification**
 - 2. Mechanical specification
 - **3. Applicable documents**
 - 4. General flow of manufacturing
 - 5. Acceptance Testing
 - 5.1 Screening
 - 5.2 Group B inspection
 - 5.3 Electrical measurements
 - 6. Radiation
 - 7. Components, Materials and Processes
 - 8. Marking
 - 9. Data Documentation
 - 10. Handling, Packaging and Delivery
 - **11. Specification History**

1. Electrical specification

Parameter	min.	typ.	max.	Unit	Condition
Frequency range	10		50	MHz	
Standard frequencies (Note 3)	20	.000 / 50.0	000	MHz	
Frequency stability				•	<u>.</u>
Initial tolerance @ +25°C			±1	ppm	V _C = 1.5 V
vs. operating temperature range		ptions 2 8 tables 1A		ppm	
vs. supply voltage variation (pushing)			±0.2	ppm	Vs ±5%
vs. load change (pulling)			±0.2	ppm	R _L ±5%
Long term (aging) 1 st year			±1	ppm	@ +40°C
Long term (aging) 5 years			±3	ppm	@ +40°C
vs. radiation			±1.5	ppm	(Note 4)
Frequency adjustment range					
Electronic Frequency Control (EFC)	±5	±10		ppm	Option 1 = "V"
EFC voltage V _C	0.5	1.5	2.5	V	
EFC slope (Δf / ΔVc)		Positive			
EFC input impedance	100			kΩ	
RF output					
Signal waveform	Clip	ped sine v	vave		
Load R _L	1	0 kΩ // 10	pF		±5%
Output voltage	0.8	1.2		Vpp	
Phase noise	Please consult factory See table 1C				
Supply voltage Vs	3.15	3.3	3.45	V	
Current consumption		2	6	mA	

Table 1 – Electrical Performance and Characteristics

Notes:

- 1. Terminology and test conditions are according to IEC60679-1 and MIL-PRF-55310 unless otherwise stated
- 2. Classification (MIL-PRF-55310): Type 5 (TCXO), Class 2 (Hybrid Technology), Product Level "S"
- 3. Arbitrary frequency within specified frequency range on request
- 4. Radiation of 40 krad(Si) total dose (TID). Radiation low dose test of TCXO series was performed up to 50 krad. Please consult factory for radiation report.

Ordering Code

Model	Product category	Option 1 [EFC]	Option 2 [Stability]	Option 3 [Temp. range]	Revision	Frequency [MHz]
AXLE7050S	EM FM	"_" = No EFC "V" = EFC	Table 1A	Table 1B	Rev.2	20.000

Examples:

(1) AXLE7050S-FM-V-10-2C_Rev.2 – 20.000 MHz (with EFC)

(2) AXLE7050S-FM_10-2C_Rev.2 - 20.000 MHz (without EFC)

Frequency stability vs. temperature

Ontion 2	Stability*
Option 2	[ppm]
10	±1.0
15	±1.5
20	±2.0
25	±2.5
30	±3.0

Lower Ter	Lower Temperature		Upper Temperature		
Option 3	T [°C]		Option 3	T [°C]	
0	0		А	+50	
1	-10		В	+60	
2	-20		C	+70	
3	-30		D	+75	
4	-40		E	+80	
			F	+85	
Table 1B					

Table 1A

*Stability referred to $(f_{max} + f_{min})/2$

Typical phase noise performance

Frequ	11	
20 MHz	50 MHz	Unit
-67	-60	dBc/Hz
-98	-90	dBc/Hz
-127	-115	dBc/Hz
-148	-135	dBc/Hz
-155	-154	dBc/Hz
-157	-160	dBc/Hz
	20 MHz -67 -98 -127 -148 -155	-67 -60 -98 -90 -127 -115 -148 -135 -155 -154

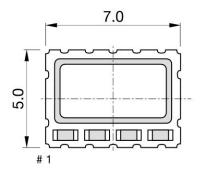
Table 1C

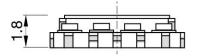
Absolute Maximum Ratings

Parameter	Min.	Max.	Unit	Condition / Remark
Supply Voltage Vs	-0.5	4.5	V	Vs to GND
Control Voltage V _c	-0.5	4.5	V	Vs to GND
Load RL	500	8	Ω	Must not cause any damage
Operable temperature range	-40	+85	°C	Operation of unit without any damage
Storage temperature range	-55	+105	°C	-

Table 2 – Maximum Ratings

AXTAL GmbH




2. Mechanical specification

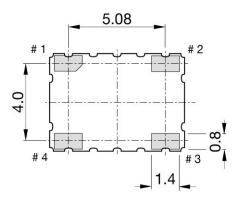

Parameter	Min.	Тур.	Max.	Unit	Condition
Enclosure (see drawing) (LxWxH)	7.	.0 x 5.0 x 1	.8	mm	Hermetically sealed
Weight			1	g	
Case	Ceran	nic packag	e with	-	
	r	netal cove	r		
Pins	NiAu plated		-		
Moisture Sensitivity Level		MSL 1			J-STD-020

Table 3 – Mechanical specification

Enclosure drawing

Pin connections

Pin #	Symbol	Function
1	Vc	Control Voltage (EFC)
2	GND	Ground
3	RF OUT	RF Output
4	Vs	Supply Voltage

3. Applicable documents

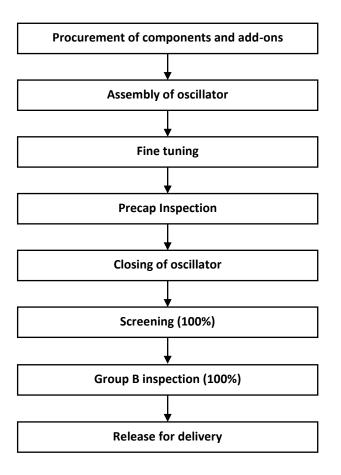
The following specifications and standards are part of this specification:

ESCC21300	Terms, Definitions, Abbreviations, Symbols and Units
MIL-STD-55310	General specification for crystal-controlled oscillators
MIL-STD-202	Test Method Standard for electronic and electrical component parts
MIL-STD-883	Test Method Standard for Microcircuits
IEC 60679-1	Quartz crystal-controlled oscillators of assessed quality Part 1: Generic specification

Order of precedence

In the event of a conflict between the text of this specification and the references cited herein, the order of precedence shall be as follows:

- (1) Purchase order
- (2) Oscillator detail specification AXLE7050S
- (3) Generic specification MIL-PRF-55310
- (4) Other documents



4. General flow of manufacturing

The figure below shows the overall flow for manufacturing:

Roemerring 9 74821 Mosbach Germany AXLE7050S Rev.2 Drawing D1

www.axtal.com contact@axtal.com fon: +49 (6261) 939834 fax: +49 (6261) 939836

5. Acceptance Testing

5.1 Screening

Table 4 shows the screening procedure according to MIL-PRF-55310 Product level "S".

#	Test	Reference			
1	Electrical measurements at room temperature (Initial)	IEC 60679-1 (see Table 1)			
2	Thermal Shock	MIL-STD-202, Method 107, Condition A-1			
3	Burn-in (load) *1	MIL-PRF-55310			
4	Seal Test – Fine Leak *2	MIL-STD-202, Method 112, Condition D			
5	Electrical measurements vs. temperature	IEC 60679-1 (see Table 1)			
6	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)			
7	7 External Visual Inspection ESCC20500 / MIL-STD-883 Met				
Table 4 - Screening procedure					

Table 4 – Screening procedure

Notes:

- 1. Burn-in can be performed at any step after assembly and is usually performed as pre-aging procedure
- 2. Fine leak test is performed for the crystal, which is a 100% test during crystal manufacturing

Table 5 shows the detailed test conditions for each step in table 4.

#	Test	Test Condition			
1	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)			
	room temperature (Initial)	Table 8			
2	Thermal Shock	-40 to +80°C, 25 cycles, max. 5 minutes transfer time,			
	Thermal Shock	15 minutes dwell time			
3	Burn-in (load)	@ T = +85°C for 10 days (nominal V _s and Load)			
4	Seal Test – Fine Leak	MIL-STD-202, Method 112, Condition D			
5	Electrical measurements vs.	@ T = T_{MIN} to T_{MAX} , 5°C steps with ±1°C tolerance			
5	temperature	Limits: See Table 1			
6	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)			
0	room temperature (Final)	Table 8			
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009			

Table 5 – Detailed test conditions for screening procedure

5.2 Group B inspection (Aging)

Table 6 shows the Group B inspection procedure.

#	Test	Reference		
1	Aging test	MIL-PRF-55310, Clause 4.7.1.5 Product level "S"		
2	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)		

Table 6 – Group B inspection procedure

Notes:

1. Group B inspection may be performed before or after screening procedure. Final electrical measurements are only performed once after completion of screening and Group B inspection.

Table 7 shows the detailed test conditions for each step in table 6.

#	Test	Test Condition
1	Aging test	@ T_{amb} = 30°C±3°C for 10 days (nominal V _s and Load)
		Frequency measurement every hour
		Limits Aging: See Table 1
2	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
2	room temperature (Final)	Table 8

Table 7 – Detailed test conditions for Group B inspection procedure

5.3 Electrical measurements

Table 8 shows all electrical measurements with its respective conditions and limits, which are performed for all models. If not otherwise stated all measurements are performed at $T_{amb} = 25^{\circ}C \pm 3^{\circ}C$ and after a sufficient stabilization time.

#	Parameter	Test Method	Conditions	Initial	Final	Limits
1	Initial frequency	IEC 60679-1	$V_{S} = 3.3 V$, $R_{L} = 10 k\Omega // 10 pF$	Х	Х	Table 1
2	Output level	IEC 60679-1	$V_{s} = 3.3 V$, $R_{L} = 10 k\Omega // 10 pF$	Х	Х	Table 1
3	Current consumption	IEC 60679-1	$V_{s} = 3.3 V$, $R_{L} = 10 k\Omega // 10 pF$	Х	Х	Table 1
4	Tuning range	IEC 60679-1	$V_{s} = 3.3 V$, $R_{L} = 10 k\Omega // 10 pF$	-	Х	Table 1
5	Phase noise	IEC 60679-1	V_S = 3.3 V, R_L = 10 k Ω // 10 pF	-	Х	Table 1

Table 8 – Electrical measurements

6. Radiation

The oscillator is capable of meeting all electrical performance requirements after exposure to a total ionizing dose (TID) of 40 krad(Si). The oscillator is based on a Space COTS approach and the radiation performance has been verified by a radiation test (Co 60) up to 50 krad(Si) and a SEE test up to 125 MeV·cm²/mg. The oscillator is SEL immune and didn't show any other destructive events during the radiation tests. Radiation reports are available on request.

7. Components, Materials and Processes

The oscillators are built on the basis of the following requirements for components, materials and processes:

- All add-on components are specially-selected commercial off-the-shelf (COTS) versions.
- The crystal is made of synthetic high Q quartz material with low inclusion density and low etch channel density (according to IEC 60758).
- The oscillator and crystal unit are in hermetically sealed packages.
- The manufacturing is done in hybrid technology with discrete capacitors at the top side of the package.
- No pure tin is used inside the oscillator, as package or lead finish. The capacitors on top of the package are COTS parts with matte tin finish and SAC3 solder. SnPb finish and solder is available on request.

The marking is resistant to Zestron VD, Isopropyl alcohol (99% pure) and Ethyl alcohol (99.5% pure), tested in accordance with ESCC24800.

8. Marking

The marking of the parts is accordance with ESCC21700. The content is as follows:

- (1) First line: Frequency & Lot number
- (2) Second line: Serial number

9. Data Documentation

General

With each delivery the following data documentation package is supplied:

- (1) Certificate of Conformity (CoC)
- (2) Test data (full report of all inspections)

The following additional documents can be delivered on request:

- Declared Component List
- Equipment List (Testing & Measuring)
- Radiation Report

Certificate of Conformity

The certificate includes the following content:

- Full company information (Logo, Name, Address)
- Type and specification (part number and revision)
- Nominal frequency
- Number of purchase order
- Lot identification
- Range of serial numbers
- Number of delivered parts
- Authorized signature in behalf of manufacturer (including stamp and date)

10. Handling, Packaging and Delivery

- Some add-ons are susceptible to damage by electrostatic discharge. Therefore, suitable ESD precautions for handling during use and manufacturing must be employed.
- In order to minimize the risk of damage, all kinds of shock during handling and manufacturing must be avoided.
- The parts are packaged in a way to ensure adequately safeguarding against mechanical and electrical injury and deterioration due to humidity.
- The primary package is labeled as ESD sensitive component.

11. Specification History

Rev.	Drawing	Date	Remarks	Author	Checked
		[dd.mm.yyyy]			
1	D0	02.02.2022	First issue	HH	BN/ME
1	D1	03.02.2022	Minor update leak test	HH	НН
1	D2	08.06.2022	Typo of order code examples corrected	HH	НН
1	D3	15.03.2023	Editorial update – Additional information added	HH	НН
2	D0	14.04.2023	Additional information and SEE data added. Typical phase noise performance updated	НН	нн
2	D1	14.03.2024	Solder type information for capacitors added	HH	HH

Roemerring 9 74821 Mosbach Germany